1. Resume

2. Façade Design
 a) Program Requirements
 b) Process 1
 c) Process 2
 d) Precedents
 e) Drawings
 f) Diagrams
 g) Model

3. XYZ Planes / Cube
 a) Program Requirements
 b) Process
 c) XYZ Planes Final
 d) Cube Final

4. Structure & Volumes
 a) Program Requirements
 b) Process
 c) Final

5. Façade Analysis
 a) Program Requirements
 b) Drawings
 c) Diagrams
 d) Model

6. Small Buildings - Fall
 a) Program Summary
 b) Process
 c) Drawings / Model

7. Misc. Work
 a) Freehand Sketches
 b) 3D CAD Works
Alexander A. Parsons
6 Chatham Woods, Pittsford, NY 14534
(585) 586-9342 (Home)
parson33@morrisville.edu
(585) 305-3387 (Cell)

Objective

To enter the architecture field and become a licensed architect

Education

Advanced Regents Diploma: (June 2006)
Pittsford Mendon High School; Pittsford, NY

Associate of Science: (Expected May 2008)
Morrisville State College; Morrisville, NY
- Major: Architectural Studies and Design

Related course work: Proficiency in Physics (PHYS 107), Strength of Materials (MECH 213), Calculus (MATH 151), Arch Design (ARCH 110, 111, 112), Arch Technology (ARCH 172), Arch CAD (CAD 183)

Skills / Abilities

Knowledge
- Graduated with 3.20 GPA, and advanced Regents Diploma from High School
- Currently holding a 3.56 GPA in College
- High level of knowledge in Microsoft Office Word, PowerPoint and Excel
- High level of knowledge in Autodesk AutoCAD

Hard Work / Discipline
- Four years of High School Football, Panther Pride Award Winner
- Two years of College Football
- Black Belt in Tae Kwan Do
Honors / Awards
- **Phi Theta Kappa Honors Society** (Aug 2007 – May 2008)
- **SUNYAC All-Academic Team** (Feb 2008)
- **SUNYAC Commissioner’s Academic List** (Fall 2008)
- **Dean’s List** (Fall 2006, Spring 2007, Fall 2007)

College / Community Involvement
- **College Football**: Offensive Lineman (Aug 2006 – Dec 2007)
- **Academic Affairs Committee**: Student Rep. (Oct 2007 – May 2008)
- **Architecture Club**: Member (Sept 2006 – May 2008)
- **AIAS Chapter**: Co-op Manager (Sept 2007 – May 2008)

References Available Upon Request

Work Experience
- **Technical Assistant** - Parsons Pipe Organ Builders: Canandaigua, NY
 Weekends, Summers, Winters, Holidays
- **Peer Tutor** - Academic Support Center: Morrisville State College, NY
 Weekdays, Afternoons, Nights
For our last design project of the semester we were assigned to design a façade for an existing building located in New York City. The development of our design, and the process of our ideas are the most important aspect of this project. We were to act as though the current façade is being remodeled and replaced with our façade that we design. The project requires us to look at existing interior photos, as well as a Plan and Section, and design a façade to complement the existing building. The range for original ideas is vast, but critical thinking, reason, and development are what make our creative ideas into a creative designs.
You are being given the documentation (sans façade) for a New York Townhouse designed by Robert A. M. Stern, Dean at Yale University. You are to design a façade for the townhouse which takes into consideration the contextual cues and plan and sectional disposition of spaces. The first floor space is to be considered “shop-front” retail space. You will need to relate your façade design to that program.

You will start by creating sketches of your design intent. Creating more sketches will give you more ideas and more chances to refine your ideas to further your process.

The sketch model is one of the most important pieces of your design process. It forms your two dimensional drawing, and even three dimensional sketches, into a working idea. With a model you create and change ideas, and it gives you of realization of whether or not your ideas are feasible.

The next phase is to start to diagram the ideas present in the design of your façade. Each of you will be required to develop a series of diagrams that elucidate (make clear, understandable) the issues important to explain your design.
Program Requirements (con’t)

Drawings

You are to draw and place your façade into the existing plan and section of the current building plans. Use standard drafting conventions to correctly portray the façade with all its components.

Diagrams

You are to engage in a process of critical speculation about the façade. You will be required to develop a series of diagrams that elucidate (make clear, understandable) the key issues related to your façade. Use all the methods and techniques you have learned over the course of your studies to show how your façade was designed.

Model

Presentation quality model of your façade at 1/2” = 1’-0”. It will depict depth, and details such as window / door frames and materials. The model should have a flat base and be able to stand on its own. This is a presentation model and should be constructed with care, accuracy, planning and consideration for materials, realism, etc…
Façade Design – Process 1

I wanted to start this project by focusing on the plan and section. I thought if I combined the Section and Plan on to one drawing that I would get design ideas that would be truly related to the existing building. This method is known as “Collageing” two views together. My problem was that I would only collage parts of the drawing at a time and only focus on select parts of the collage.
I decided to reduce the number of elements on my design, thinking that less would make things less complicated and more understandable. This method did reduce the clutter but there was still no underlying theme or tying element. I felt that a precedent was needed, something to work with and incorporate design ideas from.
Façade Design – Process 1

I choose a typical New York City skyscraper as a precedent and it helped me to unify everything. I know had a source of a tying element of verticality, as well as an idea of materials. I wanted to have a poured concrete face with some sort of sheet metal incorporated with the façade. Other ideas such as symmetry, repetition and the use of vertical elements were helping as well.
My sketch model made it clear that the entire design could not be produced on paper. The first thing that is noticed is that there is almost no depth of layers and the tying element is fighting with itself. I tried to create a base middle and top to my façade, but the metal fins and window placement made it seem as if there were four floors.
Façade Design – Process 2

My second design created a separation of layers by pulling the top bedroom out the same width of the balcony. The size and number of metal fins was changed to fit each window so as not to demolish the separation of base middle and top. The number of windows decreases from the bottom public “store-front” to the middle semi-private living area, to the private bedroom.
Façade Design – Process 2
Façade Design – Process 2
Façade Design – Process 2

DIAGRAMS

Symmetry vs. Asymmetry

Vertical Elements

Wall

Fireplace

Relation

Repetition
Façade Design – Process 2

DIAGRAMS

- Back - Middle - Top

- Solid vs. Void

- Regulating Lines

- Grid
I looked back and found some inspiration for my final design. The Business Center in Kazakhstan is where I found the idea for the metal fins. Unlike the Business Center, the fins on my façade are stationary to allow a view from the inside but inhibit a view from the outside street. The Le Vau includes similar qualities such as symmetry, entrance location, and repetition.
Façade Design – Drawings

SECTION

LEVEL 3 PLAN
Façade Design – Diagrams
Façade Design – Model
Façade Design – Model
For this design project we were to create spaces for an object which was limited to three different three dimensional planes. The objective was to understand principles of space and organization. We were aloud to make cuts in the three planes to influence the design and create organization. The object needed to be organized so that when oriented at all six different sides, one could flow from space to space in an easy fashion. We then enclosed the three planes within a Cube, which would relate to the planes and help to enhance the existing spaces, and create new secondary spaces at the same time.
You will have three (3) planes, each with a maximum dimension of 8” and a minimum dimension of 1”. The planes should be made of 3/16” thick white foam core board. Each plane should be disposed on either the X, Y, or Z axis (i.e. no plane should be parallel to another, and all planes should have an orthogonal relationship to one another). The planes must engage one another so that the entire construction is orthogonally self-supporting. The entire construction must be contained within an imaginary 8” x 8” x 8” cube that is oriented to the X, Y, and Z axes. The construction is to be viewed from any direction. The visual integrity of each plane must be maintained. Within your project there should be at least one defined space...

Through the design process you have developed a scheme that communicates a specific organization of three non-parallel planes (project three). However your scheme only implies the definition of space. You are now required to construct a cube with an interior dimension of 8” that will act as a container for your X, Y, and Z construct.
I started with a complex idea of symmetry and asymmetry with the first model but nothing was fitting. I focused more on my precedent, The Louvre Museum in Paris, and developed a pyramid shape in the center for my hierarchical space. I then proceeded to make cuts on the sides for circulation and to develop secondary and tertiary spaces.
My final three plane design incorporates a dual pyramid in the center which is accented by the four rectangle cuts to create the base of the pyramid on both sides. Doorways and openings allow for complete circulation from one area of the cube to the other.
My final cube was easier to design because it was a natural instinct to want to create a solid on the cube where there was a void on the planes, and vice-versa. I accented the center pyramid by creating a diamond on the sides and recreating the base on the top and bottom of the cube. Rectangles were also created on the top and bottom to act as “pathways” for circulation through those areas, if in fact that is how it is oriented.
Structure & Volumes

For this design project we were to create multiple volumes using five different layers of defined two dimensional shapes. For each layer there were a set number and type of shape that were to be used. We were free to arrange the given shapes in each layer in a logical and coherent manner. While arranging the shapes we had to take into consideration that each shape would create a volume with either the shape above or below it, or both, to create an abstract structure.
Horizontal and vertical structural members together will define the spatial volumes. You must understand the relationship between shape / form and volume. Horizontal structural members will define each layer. Layers will be separated/supported by vertical structural members. Each layer will be composed of a given number of two-dimensional shapes.

Each layer will be placed at different given elevations from the base. The top of layer one will be at 1" from the base, layer two will be at 2" from the base and so on according to what is given. Vertical structural members can not violate the given dimensional grid unless they are supporting, and/or defining a circular shape. Vertical structural members must be perpendicular to the base and the horizontal structural members. Vertical structural members should not be redundant or over-used in the support of horizontal structure.

There will be a logical relationship between the horizontal and vertical structural members. The arrangement of spatial volumes must express a design idea.
Program Requirements (con't)

Given Shapes:

Layer 1 ELEV 1
- 4” φ
- 4” x 4”
- 4” x 4”
- 4” x 4”

Layer 2 ELEV 2
- 4” φ
- 4” x 4”
- 3/4” x 3/4”
- 1/2” x 1/2”

Layer 3 ELEV 3
- 4” x 4”
- 4” x 4”

Layer 4 ELEV 6
Same as Layer 3

Layer 5 ELEV 8
- 4” x 4”

GRID
Nine 1 1/2” squares on each side with total dimension of 13 1/2” x 13 1/2”
Starting this project was difficult because of the restrictions of the different shapes. I started to design the simplest structure of layers, with a line of symmetry and a center point of hierarchy. The odd number of squares and the circles were difficult to incorporate because of their dimensions, in relation to the other given shapes.
After the first preliminary review with my design instructor, I felt confident I had a solid design that just needed some minor correction. I represented the circle as a twelve point “star / asterisk” but I changed it to the normal multiple strait-line circle. When I looked at this design I saw a center main building with another building complex around it, and a parking garage to the south.
Our second analysis came as a façade analysis where we were each assigned a building to research and analyze. The focus of this analysis was to identify the differentiation of layers of a given façade. Once each part of the façade was broken up into multiple layers, we were then assigned to diagram and represent the layers and how they correspond to the overall design of the assigned façade. I was assigned the Kuwait Pavilion (1992), by Santiago Calatrava.
Program Requirements

(summarized)

Drawings

Your goal in the creation of the descriptive drawing is to thoroughly familiarize yourself with the façade. Use standard drafting conventions to correctly portray the façade with all its components.

Diagrams

You are to engage in a process of critical speculation about the façade. You will be required to develop a series of diagrams that elucidate (make clear, understandable) the key issues related to your façade. Use all the methods and techniques you have learned over the course of your studies to show how your façade was designed / viewed.

Model

Your goal in the creation of the model is to use the process of model-making to uncover what the architect was thinking in designing the façade. Show the depth of each layer and the spacing in between each layer to a correct scale. Everything seen from the façade should be shown in the model.
Façade Analysis – Drawings

KUWAIT PAVILION
CALATRAVA, SANTIAGO
SEVILLE, SPAIN (1992)
Façade Analysis – Diagrams

Calatrava is most famous for his use of Motion in his many buildings, such as the Milwaukee Art Museum (2001), Campo Volantin Footbridge (1997), and the proposed PATH Terminal in New York City. The Kuwait Pavilion is literally a movable building, but I chose to view the façade with the arms of the building set in the open position because that is how it is viewed most.
Façade Analysis – Diagrams
Façade Analysis – Model

In most buildings the façade shields the rest of the building, but the Kuwait Pavilion is an open aired structure where most all of the building can be seen from the façade. We were required to show depth within layers (if a building façade has a curved wall, we needed to show that curve). Since the Kuwait Pavilion’s layers can all be seen from the front, I recreated the entire Pavilion.
Façade Analysis — Model

In most buildings the façade shields the rest of the building, but the Kuwait Pavilion is an open aired structure where most all of the building can be seen from the façade. We were required to show depth within layers (if a building façade has a curved wall, we needed to show that curve). Since the Kuwait Pavilion’s layers can all be seen from the front, I recreated the entire Pavilion.
Façade Analysis – Model
For the small buildings project we were to create four different buildings that would relate to the four different seasons of the year. All the buildings would have their own site with their own relation to the earth, and their own pair of activities. All the sites would be located in Vermont and would have to relate to the given season and the site, and the architecture and landscape of Vermont in some way. All the buildings were to be constructed mainly out of wood. The Fall project was located on a gentle, opened-field slope, with an “over ground” relationship to the earth, and a “climb-sit” pair of activities. The Fall building will contain a desk, a cabinet/shelf, and a rolling chair in a single space.
I started by choosing a typical Vermont barn and Silo as my inspiration for this project. I chose these two objects because Vermont has strong forestry and agrarian influences on the landscape and architecture of the state. I wanted to have the same connection with my buildings. I also wanted someone to actually be able to work or study in the designed space.

I decided to reduced use 2 x 8’s to panel the walls to emphasize verticality, and the fact that the building is above ground. I wanted a view of the landscape but did not want to distract the person working inside, so I chose to have no windows, but instead leave the rafters open (with no sheathing) and only 5 ft high walls. That way when one is at the desk, he/she can work and not be distracted, but when one is not working, all that is required for a view is to stand up. Open rafters also provides airflow and sunlight.
The design itself is a clear agrarian combination of a barn and a silo. The climb is a latter up into the building, much like a silo has a latter on its outside. The desk and chair both share the circular shape of the workspace wall. The framing of the walls is exposed to further connect the roof, with the walls as one unified structure.
Misc. Work – Freehand Sketches

FALLING WATER (1935), Frank Lloyd Wright (Fall 2007)

KENTUCK KNOB (1956), Frank Lloyd Wright (Fall 2007)
Misc. Work – Freehand Sketches

Zombies (Fall 2006) Portrait of Neighbor (Fall 2006)

KENTUCK KNOB (1956), Frank Lloyd Wright, Driveway Lamp (Fall 2007)
BARCELONA CHAIR (1950), Mies van der Rohe (Fall 2007)
Misc. Work – 3D CAD Work

BARCELONA PAVILLION (1929), Mies van der Rohe (Fall 2007)

Professional work for Morrisville State College Football Team

3D CAD, presentation quality drawings to be presented to 2008 freshman recruiting class